



#### SPRINT 4: How to address, interact and act on the main knowledge gaps related to emissions

# SCOPE overview – Emissions monitoring, control and mitigation

Juliana Garcia Moretz-Sohn Monteiro, TNO and Peter Moser, RWE Power AG

22. June 2023, Site Event to The 12<sup>th</sup> Trondheim Conference on CO<sub>2</sub> Capture, Transport and Storage



# **SCOPE – Emissions monitoring, control and mitigation**

#### Demonstration of emission management technologies at capture pilot plants

- Validated models to predict volatile and aerosol-based emissions
- Reliable process and operational data, sample analysis, operational and maintenance costs from tests at
  - 6 industrial sites
  - for the assessment of the performance of >20 configurations of emission mitigation technologies for volatile and aerosol-based emission
- Dependence of emissions on
  - solvent (MEA, CESAR1, MDEA/PZ, CDRmax)
  - solvent aging (500 30,000 testing hours without exchange of the solvent inventory)
  - flue gas properties (content of CO<sub>2</sub>, O<sub>2</sub>, trace components, particle number concentration and particle size distribution)
  - capture rate (90%-95%)
  - plant operation (stationary and dynamic behaviour)





- Water wash
- Acid wash
- Double water wash
- Flue gas pre-treatment
- Wet Electrostatic Precipitator (WESP)
- Dry bed
- Brownian Demister
- Lean loading tuning
- CO<sub>2</sub> quality monitoring

#### Demonstration of emission management technologies at capture pilot plants – Team, flue gas sources, and solvents



Twence TNO innovation hvc. RWE Waste-to-energy plant: 500 kg CO<sub>2</sub>/h Solvent: 30% MEA and CDRmax Flue gas: CO<sub>2</sub> 9.5 vol.-%, O<sub>2</sub> 8.3 vol.-%, 24/7 operation



HERIOT **()** SINTEF Lignite-fired power plant: 300 kg CO<sub>2</sub>/h Solvent: CESAR1 Flue gas: CO<sub>2</sub> 15.2 vol.-%, O<sub>2</sub> 5.0 vol.-% and mimicked flue gas from gas turbine/sewage sludge combustion: CO<sub>2</sub> 4 vol.-%, O<sub>2</sub> 15.0 vol.-% 24/7 operation



SINTEF RWE Biomass/propane: 30-40 kg CO<sub>2</sub>/h Solvent: CESAR1 Flue gas: CO<sub>2</sub> 11 vol.-%, O<sub>2</sub> 4 vol.-%, **Campaign operation** 



#### hvc. Tho innovation for life

Waste-to-energy plant: 540 kg CO<sub>2</sub>/h Solvent: MDEA/Piperazine blend Flue gas: CO<sub>2</sub> 15,3 vol.-%, O<sub>2</sub> 5,6 vol.-%, 24/7 operation



Hard coal-fired power plant: 830 kg  $CO_2/h$ Solvent: CDRmax Flue gas: CO<sub>2</sub> ~ 11.8 vol.-%, O<sub>2</sub> 8.2 vol.-%, **Campaign operation** 



**MICROFILT** 

Alkali chemicals and fertilizers: 60 kt CO<sub>2</sub>/a Solvent: CDRmax Flue gas:  $CO_2 \approx 12 \text{ vol.-\%}, O_2 8 \text{ vol.-\%},$ 24/7 operation



#### Test of emission mitigation technologies for CESAR1 at Niederaussem

- Flue gas source: 1,000 MW lignite-fired power plant
- Operation mode: 24/7, 300 kg<sub>co2</sub>/h@90% capture rate, 120-130°C/1.75-2.4 bar(a)
- Solvent: aged CESAR1, aqueous blend of 3.0 M AMP and 1.5 M PZ
- Test of more than 20 configurations of emission mitigation technologies for aerosol-based and volatile emissions (water wash, double water wash, acid wash, dry bed (OASE aerozone<sup>®</sup>), pretreatment, WESP)
- Start of measuring campaign: after 29,800 testing hours (1,242 days) without inventory exchange





# Generation of aerosol nuclei by the WESP and their investigation

- Macroscopic amounts of aerosol nuclei could be sampled at the inlet of the CO<sub>2</sub> absorber
- Analysis of samples by SEM/EDX
- The solid material consists mainly of Na, S, and O (Na<sub>x</sub>S<sub>y</sub>O<sub>x</sub>, most likely Na<sub>2</sub>SO<sub>4</sub>)
- **Results confirm former analysis** data of single particles



1,4

1,2

1,0

0,6

0,4

0,2

0 0

Dust [mg/m³] 0,8

#### Particles and aerosol-based emissions - Particle number concentration and size distribution

- Seldom the **amine emissions** are anticorrelated with de **dust** concentration in the flue gas before DCC, but more often a positive correlation becomes apparent. However, the dust concentration in the flue gas is no reliable measure for the likelihood of increased amine emissions
- Additionally, also the total particle number concentration [particle number/cm<sup>3</sup>] might be anticorrelated with the ٠ dust concentration [mg/m<sup>3</sup>]





#### Particles and aerosol-based emissions - Particle number concentration and size distribution

 Generally, the particle number concentration of the smaller fraction of particles < 249 nm is correlated with the amine emissions



Growth of aerosol droplets as a function of relative humidity / supersaturation is described by the Köhler equation and comprises a curvature term ~1/d and a solute term ~-1/d<sup>3</sup>



from Moser et al., "Solid Particles as Nuclei for Aerosol Formation and Cause of Emissions – Results from the Post-combustion Capture Pilot Plant at Niederaussem", Energy Procedia, 114, 2017, 1000-1016 https://doi.org/10.1016/j.egypro.2017.03.1245



# **Generation of aerosol nuclei by the WESP upstream the CO<sub>2</sub> absorber**

29 Repeat measurements for the benchmark for emission mitigation: Water wash

- Operating voltage of the WESP (wet electrostatic precipitator) ~35 kV
- Investigation of aerosol-based emissions by ELPI+ (14 size classes, diameter 6-5,400 nm), FTIR (uncertainty ± 3 % relative)
- As expected, the WESP causes increase of the particle number concentration from ~10<sup>4</sup> to ~10<sup>6</sup> particles per cm<sup>3</sup> by the formation of small particles <0.1 μm and increase of the amine emissions >25%



# Control of volatile and aerosol-based emissions - Example: Dry bed

- Strong reduction of volatile and aerosol-based emissions of AMP and PZ by the dry bed
- No effect on emission of NH<sub>3</sub>
- Recommendation: sufficient testing times of 2-4 days for individual tests to be able to evaluate the real effects after the amine concentration in the water wash has achieved steady state





# We are producing a lot of data... How do we turn that into applied knowledge?



10

#### What to do with data? Put it into models!





SPRINT4: SCOPE overview – Emissions monitoring, control and mitigation

#### What to do with data? Put it into models!





SPRINT4: SCOPE overview – Emissions monitoring, control and

mitigation

#### What to do with data? Put it into models!





SPRINT4: SCOPE overview – Emissions monitoring, control and

mitigation

#### The results from these modelling activities will allow to:

- ✓ Issue permits with confidence
  - Experimental data
  - Models
  - Literature

 $\checkmark$  Deploy amine-based CO<sub>2</sub> capture at scale



#### TCCS, June 2023

H. F. Svendsen and H. K. Knuutila. Comparison between a distribution function based and a class-based aerosol model.

P. Moser and M. François. Volatile and aerosol-based emissions of aged CESAR1 and their mitigation - measurement and simulation.







SPRINT4: SCOPE overview – Emissions monitoring, control and mitigation



**MEA** emissions

CESAR1 emissions



Which classes of particles are responsible for aerosol MEA emissions?

| Inlet droplet diam., nm  | 9                    | 19                    | 36                    | 64                    | 110                   | 190                   | 310                   | 480                  |
|--------------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|
| Outlet droplet diam., nm | 11                   | 204                   | 1401                  | 2412                  | 3088                  | 3650                  | 4123                  | 4558                 |
| Outlet droplet no. #/m3  | 5.2 10 <sup>11</sup> | 4.32 10 <sup>11</sup> | 3.85 10 <sup>11</sup> | 1.86 10 <sup>11</sup> | 1.11 10 <sup>11</sup> | 5.05 10 <sup>10</sup> | 1.18 10 <sup>10</sup> | 3.70 10 <sup>8</sup> |
| % aerosol emission out   | ~0                   | 0.001%                | 9.8 %                 | 24.7%                 | 31.9%                 | 24.8%                 | 8.5%                  | 0.4%                 |

This can guide the design of mitigation technologies (demister, filters,...)



19

SPRINT4: SCOPE overview – Emissions monitoring, control and mitigation

#### **Aerosol and Volatile Emissions modelling**

SC



In the absence of WESP-generated particles:

| Emissions in mg/Nm <sup>3</sup> | Only  | WW  | Dry bed + WW |     |  |
|---------------------------------|-------|-----|--------------|-----|--|
|                                 | AMP   | PPZ | AMP          | PPZ |  |
| Experimental                    | 26-28 | 8-9 | ~0           | 1.5 |  |
| Model, aerosol                  | ~0    | ~0  | ~0           | ~0  |  |
| Model, gas phase                | 45.5  | 7.2 | 1.0          | 0.7 |  |

Model explains the volatile CESAR1 emissions (AMP, PZ) relatively well. Deviations come from uncertainties in the experiments, as well as the thermodynamic model



With WESP-generated particles:

| Emissions in mg/Nm <sup>3</sup> | Only  | ww   | Dry bed + WW |     |  |
|---------------------------------|-------|------|--------------|-----|--|
|                                 | AMP   | PPZ  | AMP          | PPZ |  |
| Experimental                    | 29-30 | 9-10 | ~0           | 2.3 |  |
| Model, aerosol                  | 1     | 5.7  | 0.1          | 3.3 |  |
| Model, gas phase                | 50.6  | 5.4  | 2.1          | 1.4 |  |

Model explains the aerosol emissions of AMP and PZ relatively well. Deviations come from uncertainties in the experiments, as well as the thermodynamic, kinetics and aerosol growth models



SPRINT4: SCOPE overview – Emissions monitoring, control and mitigation

#### Acknowledgements

This project is funded through the ACT programme (Accelerating CCS Technologies), ACT 3 Project No 327341. Financial contributions made by the Research Council of Norway (RCN), Rijksdienst voor Ondernemend Nederland (RVO), Department for Business, Energy & Industrial Strategy UK (BEIS), Forschungszentrum Jülich GmbH, Projektträger Jülich (FZJ/PtJ) Germany, Department of Energy (DoE) USA and Department of Science and Technology (DST) India are gratefully acknowledged.

www.scope-act.org

@SCOPE\_ACT

