

Validation of a CESAR1 Solvent Model with a Focus on Water Wash Conditions

IEAGHG 7th Post Combustion Capture Conference Pittsburgh, PA

Jeff Weinfeld¹ and Diego Pinto²

WP1 | Optimized Gas Treating, Inc.¹, Hovyu B.V.²

September 27, 2023

Presentation Outline

- Background
 - Absorber/regenerator loop with water-wash
 - CESAR1 solvent
 - SCOPE project
 - OGT's role/objective
- ProTreat[®] CESAR1 model development
 - OGT rate model
 - Physical properties
 - VLE
- Conclusion and upcoming work

¹Knudesen et al. (2011)

CESAR1 Solvent

- Developed by EU-funded CO₂ Enhanced Separation and Recovery (CESAR) project (2008) to 2011)
- Composition
- Regeneration energy of 2.6 to 2.8 MJ/Kg_{CO2}^{1}
- Potential to replace MEA as benchmark solvent
 - Promising, but lacking literature
 - Questions over emissions control
 - Higher confidence needed in models

¹Feron et al. (2020)

SCOPE Project

- Sustainable Operation of Post-combustion Capture Plants (SCOPE)
 - ACT-funded project (accelerating CCS technology)
 - Multinational consortium of 24 partners across 5 "work packages"
- SCOPE Objectives
 - Develop effective emissions control guidelines
 - Validate predictions against data from six different pilot plants (MEA and CESAR1)
 - Environmental risk assessment
 - Best policies and practices
- OGT's Role
 - WP 1: Emissions management tools
 - Develop and improve ProTreat[®] CESAR1 model
 - Use new VLE data generated through SCOPE, focus on water wash region

ProTreat[®] Rate Model

Absorber non-ideal behavior is better captured by rate-based models

Four Step Mass Transfer w/ Reaction

- 1. Gas diffusion (driving force)
- 2. Gas solubility in liquid (equilibrium)
- 3. Chemical Reaction (liquid phase)
- 4. Liquid diffusion (driving force)

Separation and Transfer Rates depend on:

- Area for mass/heat transfer
- Vapor & liquid loads
- System Kinetics
- Composition, physical and transport properties (c_P , μ , σ , ρ , D)
- Driving force phases are not in equilibrium

Property Modeling

Need to model relevant compositions of AMP/PZ/Water/CO₂ system

Constant Properties

- Critical Pressure
- Critical Temperature
- Critical Volume
- Critical Compressibility Factor
- Acentric Factor
- Dipole Moment
- Boiling Point

Pure and Aqueous Properties

- Vapor Pressure
- Density
- Viscosity
- Thermal Conductivity
- Surface Tension
- Heat Capacity
- Heat of Absorption

Reaction Properties

- CO₂ Kinetics
- pKa of Protonation

Checked each against literature, updated in ProTreat[®] model as necessary

**Relative Error* % = $100 * \left| \frac{Calc-Meas}{Meas} \right|$

AMP/Water Viscosity

ProTreat[®] Legacy Model

ProTreat[®] Updated Model

Relative Error: 8.6%

WP1/OGT

VLE Model

- "OGT Gas Treating" Thermo Method
 - ProTreat[®] proprietary methods
 - Deshmukh-Mather Activity coefficient model¹
 - Used with Peng-Robinson EOS
 - Poynting correction included
 - Ion-ion, molecule-ion, molecule-molecule interactions parameters regressed, both with and without CO₂ and H₂S

<u>Binary</u>

AMP-Water (ProTreat[®] Proprietary) PZ-Water (ProTreat[®] Proprietary)

Ternary

AMP-Water-CO2 (Deshmukh-Mather) PZ-Water-CO2 (Deshmukh-Mather)

Quaternary AMP-PZ-Water-CO2 (Deshmukh-Mather)

¹Deshmukh, R. D. & A. E. Mather, *Chem. Eng. Sci.*, **1981**, 36, 355-362

Activity Coefficient Fitting AMP/Water

VLE

- 120 data points
- 3 sources
- 293 to 497 K
- Large conc. range •

Freezing Point Depression

- 29 data points
- 2 sources

Excess Enthalpy

- 16 data points
- 1 source

Excess Heat Capacity

- 210 data points
- 4 sources

Freezing Point Depression

Deshmukh-Mather Fitting: AMP/Water/CO₂

11

Deshmukh-Mather Fitting: AMP/PZ/Water/CO₂

•

•

Conclusions

- Large amount of data processed to create high accuracy ProTreat[®] CESAR1 model
- Why?
 - High accuracy models needed for CESAR1 evaluation, design, etc.
 - Rate-based models have predictive capabilities
 - Model is currently being used by other SCOPE partners for plant validation, uncertainty quantification
 - Model eventually accessible to public through ProTreat[®] commercial software
- Upcoming work: Internal plant validation and tuning of model

Acknowledgements

This project is funded through the ACT programme (Accelerating CCS Technologies), ACT 3 Project No 327341. Financial contributions made by the Research Council of Norway (RCN), Rijksdienst voor Ondernemend Nederland (RVO), Department for Business, Energy & Industrial Strategy UK (BEIS), Forschungszentrum Jülich GmbH, Projektträger Jülich (FZJ/PtJ) Germany, Department of Energy (DoE) USA and Department of Science and Technology (DST) India are gratefully acknowledged.

www.scope-act.org

Thank you

Contact Info

jeff.weinfeld@ogtrt.com

diegoddp@hovyu.com

